Skip to main content

Albert Berrebi, PhD

Assistant Vice President for Research; Professor

 Albert S. Berrebi

304-293-2357

Affiliations

Research & Graduate Education; Otolaryngology/Head & Neck Surgery; Neurobiology & Anatomy; Blanchette Rockefeller Neurosciences Institute

Graduate Training

Ph.D. in Developmental Psychobiology, University of Connecticut

Fellowship

National Institutes of Health, (NINCDS) NRSA Postdoctoral Fellow;
Neuromorphology Laboratory, University of Connecticut


Research Interests

The Berrebi lab’s research program addresses the principles of organization of neuronal microcircuits in the central auditory pathway, with particular emphasis on chemical phenotypes that can be revealed with immunocytochemical techniques. Brain microinjections (physiological transport/tract-tracing) are employed to uncover the input-output relations of specific neuronal populations, and electron microscopy is utilized to characterize the ultrastructural features of auditory neurons and their synaptic inputs. We also perform in vivo extracellular recordings of sound-evoked activity in brainstem neurons, and selectively block receptors for inhibitory neurotransmitters to uncover the role of inhibition in shaping the response properties of the cell population under study. By unraveling complex neural pathways, our goal is to contribute to a better understanding of neural mechanisms of hearing, and to the development of refined cochlear and cochlear nucleus prostheses. 

Research Topics

We are interested in the principles of organization of neuronal circuits in the auditory brainstem. Various anatomical and physiological techniques are employed to uncover the structure and function of nuclei of the superior olive in order to better understand their roles in hearing. Immunocytochemical techniques reveal the neurotransmitters used by specific populations of cells, and tract-tracing methods uncover their synaptic targets and source of inputs. This type of work is performed at both the light and electron microscopic levels. 

In our electrophysiology lab, we perform in vivo extracellular recordings of sound-evoked activity in brainstem neurons, and selectively block receptors for inhibitory neurotransmitters to uncover the role of inhibition in shaping their response properties. 

Our work addresses the principles of organization of particular neuronal microcircuits and utilizes anatomical and cytological techniques, with emphasis on characteristic chemical phenotypes that can be revealed with immunocytochemistry. The research is centered on a pair of nuclei in the mammalian auditory brainstem, the MNTB and the SPON. To reveal the synaptic connectivity of these cell groups, we use brain microinjections of substances that are subsequently transported via physiological transport mechanisms. Both light and electron microscopy are used to analyze these sorts of data, as the resolution required to identify a synaptic contact unequivocally is only achieved atthe ultrastructural level. 

Our long term goal is to develop a better understanding of neural mechanisms underlying hearing, and thereby contribute to the development of refined prosthetic devices to assist the hearing impaired. 


Lab Personnel

Dennis Cole 
Research Assistant
304-293-0273
dcole@hsc.wvu.edu

Fei Gao, PhD
Postdoctoral Fellow
(304) 293-1325
fgao2@hsc.wvu.edu

Alexandra Kadner, PhD 
Postdoctoral Fellow 
(304) 293-0610
alkadner@hsc.wvu.edu


Publications

[2015]

  • F Gao, Berrebi AS. Forward masking in the medial nucleus of the trapezoid body of the rat. Brain Structure and Function (2015), in press.

[2014]

  • RA Felix II, Berrebi AS. The superior paraolivary nucleus shapes properties of neurons in the inferior colliculus . Brain Structure and Function (2014), in press.

[2013]

[2012]

[2011]

[2009]

  • Saldaña E, Aparicio MA, Fuentes-Santamaría V, Berrebi AS. Connections of the superior paraolivary nucleus of the rat: projections to the inferior colliculus. Neuroscience (2009), 163(1):372-87.

[2008]

  • Kadner A, Berrebi AS. Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat. Neuroscience (2008)

[2007]

  • Howell DM, Morgan WJ, Jarjour AA, Spirou GA, Berrebi AS, Kennedy TE, Mathers PH. Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus . Journal of Comparative Neurology (2007), 504(5):533-549.
  • Kadner A, Berrebi AS. Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat. Neuroscience (2007, in press).
  • Kulesza Jr RJ, Kadner A, Berrebi AS. Distinct roles for glycine and GABA in shaping the response properties of neurons in the superior paraolivary nucleus of the rat. Journal of Neurophysiology (2007), 97(2):1610-1620.

[2006]

  • Kadner A, Kulesza RJ Jr, Berrebi AS. Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. Journal of Neurophysiology (2006), 95(3):1499-1508.
  • Kadner A, Pressimone VJ, Lally BE, Salm AK, Berrebi AS. Low-frequency hearing loss in prenatally stressed rats. Neuroreport (2006), 17(6):635-638.
  • Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. Journal of Neuroscience (2006), 26(19):5069-5082.
  • Moreno S, Imbroglini V, Ferraro E, Bernardi C, Romagnoli A, Berrebi AS, Cecconi F. Apoptosome impairment during development results in activation of an autophagy program in cerebral cortex. Apoptosis (2006), 11(9):1595-1602.